Основы метрологии и измерительной техники
Изучение и исследование средств измерений электрических и неэлектрических величин.
Методические указания к лабораторным работам являются составной частью программы по дисциплине "Основы метрологии и измерительной техники " , изучаемой студентами 2-го курса специальности 2101 - ЭВМ. системы , комплексы и сети.
Лабораторные работы выполняются в объеме 18 часов.
Основным содержанием лабораторных работ является получение практических навыков работы с современными измерительными приборами, изучение методик определения основных метрологических характеристик измерительных преобразователей и построение алгоритмов практического применения преобразователей в системах с электронно-вычислительной аппаратурой.
Часть 2-3. Исследование функций преобразования и метрологических характеристик бесконтактных волоконно- оптических датчиков перемещений.
1.Цель работы, ее краткое содержание.
Целью данной работы является освоение методик определения основных метрологических и эксплуатационных характеристик первичных измерительных преобразователей информации на примере бесконтактного волоконно- оптического датчика перемещений , а также разработка алгоритма адаптации в системы ,содержащие средства вычислительной техники.
2.Теоретические сведения.
Исследуемый в лабораторной работе бесконтактный волоконно-оптический преобразователь перемещений представляет собой систему состоящую из источника излучения ,примо- предающего волоконно- оптического канала и фотоприемника. Здесь поток излучения от источника 1 вводится в предающий световод 2 и на его выходе формируется расходящийся поток излучения в виде конуса, ограниченного апертурой оптических волокон. При падении потока на поверхность объекта часть его отражается и попадает в приемный световод 3 ,проходит по нему в фотоприемник 4, где преобразуется в электрический сигнал. Если изменять расстояние между торцом приемо- предающего световода от нуля , то премещение и выходной ток фотоприемника связаны зависимостью , показанной на рисунке 2.
Рис.1 Схема волконно-оптического Рис2 Типичная зависимость
датчика.
Зависимость имеет восходящий участок, обусловленный увеличением потока, попадающего в приемный световод, участок максимума ,где наступает равновесие между потоком, входящим в приемный канал и выходящим за его пределы и падающий участок , где преобладает поток ,выходящий за границу приемного световода.
На характеристике видны два квазилинейных участка из которых могут быть сформированы функции преобразования ВОД , являющиеся основной метрологической характеристикой. Наиболее часто для преобразования перемещения в электрический сигнал используется восходящий участок , гду крутизна существенно больше.
Преобразователи такого типа , получившие применение для бесконтактного преобразования перемещений в электрический сигнал в сложных условиях окружающей среды , имеют индивидуальные функции преобразования и для каждого экземпляра определяются отдельно.
Функция преобразования на восходящем участке с достаточной степенью точности можно апроксимировать полиномом третьей степени:
Коэффициенты определяются из соотношений:
А = ---------------------------------------------------------------------------
А = ----------------------------------------------------------------------------------
А = --------------------------------------------------------------------------------------
А =----------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------
где- = 0,1... - номер экспериментальной точки функции преобразования;
- число полученных значений функции преобразования ;
А -отклик ВОД при - ом значении входного параметра;
х - приращение входного параметра.
Положение начальной установки датчика относительно отражающей поверхности определяется точкой перегиба функции .
3. Оборудование лабораторного стенда
При проведении экспериментальных исследований в данной работе используется следующее оборудование:
осциллограф, цифровой вольтметр, специальный штатив с возможностью контроля перемещений ,волоконно-оптический датчик.
Питание волоконно-оптического датчика осуществляется от централизованного источника питания.
4. Методика проведения работы.
1. Изучить описание проведения лабораторной работы.
2. Подготовить измерительную установку к работе. Для этого необходимо:
включить питание датчика,
включить измерительные приборы и дать им прогреться в течении 15 мин.;
установить терец световода над исследуемым участком отражающей поверхности;
подключить выход ВОД ко входу цифрового вольтметра.
3. Снять и построить функцию преобразования ВОД . Для этого необходимо:
-отвести общий торец световода с помощью микрометричекой пары до положения, когда на вольтметре появится максимальное значение напряжения:
-подводя общий торец световода к отражающей поверхности через каждые 500 мкм зафиксировать и записать значения показаний вольтметра;
-определить примерное положение точки перегиба функции преобразования как
-установить преобразователь в положение соответствующее этой точке по показанию вольтметра;
-отводя датчик вверх и вниз от точки перегиба снять показания вольтметра через каждые 500 мкм;
-повторить эти действия 10 раз, данные занести в таблицу.
4. По данным экспериментального исследования построить функцию преобразования по средним значениям экспериментальных точек.
5. По этим же данным определить:
-максимальное значение доверительного интервала для Р=0,95 ,используя таблицы Стьюдента:
-гистограмму распределения погрешностей.
6.Построить алгоритм и вычислить коэффициенты апроксимирующего полинома.
7. Провести исследование влияния одного из дестабилизирующих факторов по указанию преподавателя.
5. Требование к отчету по выполненной работе.
В отчет по лабораторной работе необходимо включить:
1. Цель работы.
2. Структурную схему определения параметров ВОД.
3. Протоколы измерений.
4. Графические зависимости.
5. Алгоритм расчета и величины коэффициентов апроксимирующей функции.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ ЭЛЕКТРОНИКИ И
МАТЕМАТИКИ
МЕТОДИЧЕСКИЕ УКАЗАНИЯ
к лабораторным работам по курсу "Основы метрологии и измерительной техники".
Факультет автоматики и
вычислительной техники
Кафедра "Электронно-
вычислительная аппаратура
Москва - 1998
Изучение и исследование средств измерений электрических и неэлектрических величин.
Методические указания к лабораторным работам являются составной частью программы по дисциплине "Основы метрологии и измерительной техники " , изучаемой студентами 2-го курса специальности 2101 - ЭВМ. системы , комплексы и сети.
Лабораторные работы выполняются в объеме 18 часов.
Основным содержанием лабораторных работ является получение практических навыков работы с современными измерительными приборами, изучение методик определения основных метрологических характеристик измерительных преобразователей и построение алгоритмов практического применения преобразователей в системах с электронно-вычислительной аппаратурой.
Часть 2-3. Исследование функций преобразования и метрологических характеристик бесконтактных волоконно- оптических датчиков перемещений.
1.Цель работы, ее краткое содержание.
Целью данной работы является освоение методик определения основных метрологических и эксплуатационных характеристик первичных измерительных преобразователей информации на примере бесконтактного волоконно- оптического датчика перемещений , а также разработка алгоритма адаптации в системы ,содержащие средства вычислительной техники.
2.Теоретические сведения.
Исследуемый в лабораторной работе бесконтактный волоконно-оптический преобразователь перемещений представляет собой систему состоящую из источника излучения ,примо- предающего волоконно- оптического канала и фотоприемника. Здесь поток излучения от источника 1 вводится в предающий световод 2 и на его выходе формируется расходящийся поток излучения в виде конуса, ограниченного апертурой оптических волокон. При падении потока на поверхность объекта часть его отражается и попадает в приемный световод 3 ,проходит по нему в фотоприемник 4, где преобразуется в электрический сигнал. Если изменять расстояние между торцом приемо- предающего световода от нуля , то премещение и выходной ток фотоприемника связаны зависимостью , показанной на рисунке 2.
Рис.1 Схема волконно-оптического Рис2 Типичная зависимость
датчика.
Зависимость имеет восходящий участок, обусловленный увеличением потока, попадающего в приемный световод, участок максимума ,где наступает равновесие между потоком, входящим в приемный канал и выходящим за его пределы и падающий участок , где преобладает поток ,выходящий за границу приемного световода.
На характеристике видны два квазилинейных участка из которых могут быть сформированы функции преобразования ВОД , являющиеся основной метрологической характеристикой. Наиболее часто для преобразования перемещения в электрический сигнал используется восходящий участок , гду крутизна существенно больше.
Преобразователи такого типа , получившие применение для бесконтактного преобразования перемещений в электрический сигнал в сложных условиях окружающей среды , имеют индивидуальные функции преобразования и для каждого экземпляра определяются отдельно.
Функция преобразования на восходящем участке с достаточной степенью точности можно апроксимировать полиномом третьей степени:
Коэффициенты определяются из соотношений:
А = ---------------------------------------------------------------------------
А = ----------------------------------------------------------------------------------
А = --------------------------------------------------------------------------------------
А =----------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------
где- = 0,1... - номер экспериментальной точки функции преобразования;
- число полученных значений функции преобразования ;
А -отклик ВОД при - ом значении входного параметра;
х - приращение входного параметра.
Положение начальной установки датчика относительно отражающей поверхности определяется точкой перегиба функции .
3. Оборудование лабораторного стенда
При проведении экспериментальных исследований в данной работе используется следующее оборудование:
осциллограф, цифровой вольтметр, специальный штатив с возможностью контроля перемещений ,волоконно-оптический датчик.
Питание волоконно-оптического датчика осуществляется от централизованного источника питания.
4. Методика проведения работы.
1. Изучить описание проведения лабораторной работы.
2. Подготовить измерительную установку к работе. Для этого необходимо:
включить питание датчика,
включить измерительные приборы и дать им прогреться в течении 15 мин.;
установить терец световода над исследуемым участком отражающей поверхности;
подключить выход ВОД ко входу цифрового вольтметра.
3. Снять и построить функцию преобразования ВОД . Для этого необходимо:
-отвести общий торец световода с помощью микрометричекой пары до положения, когда на вольтметре появится максимальное значение напряжения:
-подводя общий торец световода к отражающей поверхности через каждые 500 мкм зафиксировать и записать значения показаний вольтметра;
-определить примерное положение точки перегиба функции преобразования как
-установить преобразователь в положение соответствующее этой точке по показанию вольтметра;
-отводя датчик вверх и вниз от точки перегиба снять показания вольтметра через каждые 500 мкм;
-повторить эти действия 10 раз, данные занести в таблицу.
4. По данным экспериментального исследования построить функцию преобразования по средним значениям экспериментальных точек.
5. По этим же данным определить:
-максимальное значение доверительного интервала для Р=0,95 ,используя таблицы Стьюдента:
-гистограмму распределения погрешностей.
6.Построить алгоритм и вычислить коэффициенты апроксимирующего полинома.
7. Провести исследование влияния одного из дестабилизирующих факторов по указанию преподавателя.
5. Требование к отчету по выполненной работе.
В отчет по лабораторной работе необходимо включить:
1. Цель работы.
2. Структурную схему определения параметров ВОД.
3. Протоколы измерений.
4. Графические зависимости.
5. Алгоритм расчета и величины коэффициентов апроксимирующей функции.
Государственный комитет РФ по высшему образованию
Московский государственный институт электроники и математики
Кафедра ЭВА
Лабораторная работа
по курсу "Метрология и измерительная техника"
Исследование функций преобразования и метрологических характеристик бесконтактных волоконно-оптических датчиков перемещений.
Выполнили студенты группы С-45
Голышевский А.
Костарев В.
Куприянов Ю.
Сапунов Г.
Преподаватель
Зак Е.А.
Москва 1998
Цель работы: Освоение методик определения основных метрологических и эксплуатационных характеристик первичных измерительных преобразователей информации на примере бесконтактного волоконно-оптического датчика перемещений.
Используемое оборудование: волоконно-оптический датчик перемещения, специальный штатив с возможностью контроля перемещений, цифровой вольтметр, микрометрический винт, четыре различных типа поверхности.
Алгоритм получения результатов.
Волоконно-оптический датчик подключают к цифровому вольтметру.
Часть 1. Нахождение функции преобразования.
- Изменяя расстояние между датчиком и поверхностью, находим положение датчика, при котором напряжение на выходе датчика будет максимальным.
- Находим точку перегиба функции преобразования. Для этого измеряем напряжение в нескольких точках при x<x max , находим, на каком интервале самое большое изменение показаний вольтметра. Точка перегиба - внутри этого интервала.
Расстояние до x max, мкм
|
Показания вольтметра, В
|
Разность соседних показаний, В
|
0
|
|
|
-300
|
|
|
-600
|
|
|
-900
|
|
|
-1200
|
|
|
-1500
|
|
|
-1800
|
|
|
Дальнейшие измерения расстояния будут вестись относительно точки х 0 , соответствующей напряжению ( + )/2 = В
- Находим напряжение в 10 точках, в две стороны от х 0 с шагом 100 мкм. Измерение в каждой точке производится 6 раз.
Результаты измерений и средние значения
|
x, мкм
|
|
|
U, B
|
|
|
|
Uср, В
|
-500
|
0,24
|
0,24
|
0,24
|
0,24
|
0,24
|
0,24
|
0,24
|
-400
|
0,38
|
0,37
|
0,37
|
0,36
|
0,37
|
0,37
|
0,37
|
-300
|
0,56
|
0,56
|
0,56
|
0,55
|
0,56
|
0,56
|
0,558333
|
-200
|
0,8
|
0,79
|
0,79
|
0,78
|
0,79
|
0,79
|
0,79
|
-100
|
1,06
|
1,04
|
1,05
|
1,04
|
1,05
|
1,05
|
1,048333
|
0
|
1,36
|
1,36
|
1,34
|
1,33
|
1,34
|
1,34
|
1,345
|
100
|
1,64
|
1,72
|
1,68
|
1,62
|
1,62
|
1,63
|
1,651667
|
200
|
2
|
2,01
|
2
|
1,9
|
1,9
|
1,95
|
1,96
|
300
|
2,25
|
2,3
|
2,26
|
2,2
|
2,19
|
2,2
|
2,233333
|
400
|
2,5
|
2,55
|
2,52
|
2,47
|
2,45
|
2,46
|
2,491667
|
500
|
2,77
|
2,74
|
2,73
|
2,66
|
2,66
|
2,69
|
2,708333
|
- Для каждого расстояния находим среднеквадратическое отклонение, относительную погрешность и доверительный интервал.
Расчет погрешностей
|
|
|
x, мкм
|
Среднеквадр. отклонение
|
Относительная погрешность
|
Доверительный интервал
|
-500
|
0
|
0,00%
|
0,000000
|
-400
|
0,006324555
|
1,71%
|
0,016444
|
-300
|
0,004082483
|
0,73%
|
0,010614
|
-200
|
0,006324555
|
0,80%
|
0,016444
|
-100
|
0,007527727
|
0,72%
|
0,019572
|
0
|
0,012247449
|
0,91%
|
0,031843
|
100
|
0,040207794
|
2,43%
|
0,104540
|
200
|
0,050990195
|
2,60%
|
0,132575
|
300
|
0,043665394
|
1,96%
|
0,113530
|
400
|
0,038686776
|
1,55%
|
0,100586
|
500
|
0,045350487
|
1,67%
|
0,117911
|
- По средним значениям напряжения и с учетом доверительного интервала строим график функции преобразования датчика:
График можно аппроксимировать кубическим полиномом
,где коэффициенты определяются по формулам:




ãäå:
j= 0,1... - íîìåð ýêñïåðèìåíòàëüíîé òî÷êè ôóíêöèè ïðåîáðàçîâàíèÿ;
n - ÷èñëî ïîëó÷åííûõ çíà÷åíèé ôóíêöèè ïðåîáðàçîâàíèÿ (n=11);
A j - îòêëèê ÂÎÄ ïðè j-îì çíà÷åíèè âõîäíîãî ïàðàìåòðà;
D õ i - ïðèðàùåíèå âõîäíîãî ïàðàìåòðà ( D õ i =0,1 ìì).
Часть 2. Исследование влияния условий (типа поверхности) на функцию преобразования.
Измерения производятся для четырех типов поверхности: белая бумага, черная бумага и текстолит с двух сторон. Измеряем напряжение на выходе датчика в точках от x=0 до значения, при котором напряжение будет максимальным, с шагом 200 мкм.
x, мкм
|
Тип поверхности
|
|
|
|
отражающая
|
белая
|
черная
|
текстолит
|
0
|
0,37
|
0,53
|
0,048
|
0,35
|
200
|
0,43
|
0,65
|
0,127
|
0,35
|
400
|
0,47
|
0,82
|
0,145
|
0,355
|
600
|
0,575
|
1,02
|
0,173
|
0,36
|
800
|
0,7
|
1,24
|
0,187
|
0,365
|
1000
|
0,89
|
1,44
|
0,2
|
0,372
|
1200
|
1,245
|
1,66
|
0,203
|
0,38
|
1400
|
1,62
|
1,8
|
0,21
|
0,38
|
1600
|
1,9
|
1,87
|
0,21
|
0,38
|
1800
|
2,15
|
1,93
|
0,205
|
0,385
|
2000
|
2,4
|
1,95
|
0,2
|
0,38
|
2200
|
2,5
|
1,94
|
0,19
|
0,375
|
2400
|
2,48
|
1,93
|
0,18
|
0,37
|
2600
|
2,47
|
1,92
|
|
|
Часть 3. Выводы.
Ðàáîòà âîëîêîííî-îïòè÷åñêîãî äàò÷èêà çàâèñèò îò ñîñòîÿíèÿ ïîâåðõíîñòè ðàáî÷åé ïëàñòèíû, åå êîýôôèöèåíòà îòðàæåíèÿ è ñòåïåíè ðàññåèâàíèÿ ñâåòà ïðè îòðàæåíèè îò ïîâåðõíîñòè. Ôóíêöèÿ ïðåîáðàçîâàíèÿ äàò÷èêà èíäèâèäóàëüíà äëÿ êàæäîãî ñî÷åòàíèÿ äàò÷èê — ïîâåðõíîñòü. Ðàçìåð (äëèíà) ðàáî÷åãî ó÷àñòêà õàðàêòåðèñòèêè îïðåäåëÿåòñÿ ðàññåèâàíèåì ñâåòà îò ïîâåðõíîñòè, à óãîë íàêëîíà — êîýôôèöèåíòîì îòðàæåíèÿ ñâåòà. Äàò÷èê õàðàêòåðèçóåòñÿ ïîëíûì îòñóòñòâèåì âëèÿíèÿ íà îáúåêò.
Ïîãðåøíîñòü (àáñîëþòíàÿ) ìèêðîìåòðà ïðè èçìåðåíèÿõ ñîñòàâëÿëà 5 ìêì. À ïîãðåøíîñòü âîëüòìåòðà — âî âòîðîì çíàêå ïîñëå çàïÿòîé, òî åñòü ïðè èçìåðåíèÿõ ñ ìåòàëëè÷åñêîé ïëàñòèíîé îíà ñîñòàâèëà äî 0,05 Âîëüòà. Âîëüòìåòð îáëàäàåò òðåìÿ ñ ïîëîâèíîé ðàçðÿäàìè, íî ñëó÷àéíàÿ ïîãðåøíîñòü èç-çà íåïðåðûâíîãî èçìåíåíèÿ ïîêàçàíèé â äàííîì ñëó÷àå îêàçàëàñü âûøå.
|